Enhanced esterase activity during the degradation of dibutyl phthalate by Fusarium species in liquid fermentation

Author:

González-Márquez Angel1,Volke-Sepulveda Tania2,Díaz Rubén3,Sánchez Carmen3ORCID

Affiliation:

1. Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, CP 90000, Tlaxcala, Mexico

2. Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco N° 186, Col. Vicentina, CP 09340, Iztapalapa, CDMX, Mexico

3. Laboratory of Biotechnology, Research Centre for Biological Sciences, Universidad Autónoma de Tlaxcala, Ixtacuixtla, CP 90062, Tlaxcala, Mexico

Abstract

Abstract Dibutyl phthalate (DBP) is one of the most abundantly produced and used plasticizers and is incorporated into plastic to make it more flexible and malleable. DBP has been found to be an environmental contaminant and reported as an endocrine disruptor. Therefore, it is crucial to develop ecofriendly alternatives to eliminate phthalate pollution. In the present research, the growth of F. culmorum and F. oxysporum in the presence of DBP was studied in liquid fermentation. The esterase activity, specific growth rate, and growth and enzymatic yield parameters were determined in DBP-supplemented media (1,500 or 2,000 mg/L) and in control medium (lacking DBP). These results show that in general, for both Fusarium species, the highest esterase activities, specific growth rates, and yield parameters were observed in media supplemented with DBP. It was observed that 1,500 and 2,000 mg of DBP/L did not inhibit F. culmorum or F. oxysporum growth and that DBP induced esterase production in both fungi. These organisms have much to offer in the mitigation of environmental pollution caused by the endocrine disruptor DBP. This study reports, for the first time, esterase production during the degradation of high concentrations (i.e., 1,500 and 2,000 mg/L) of DBP by F. culmorum F. oxysporum.

Funder

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3