Mechanistic aspects of IPTG (isopropylthio-β-galactoside) transport across the cytoplasmic membrane of Escherichia coli—a rate limiting step in the induction of recombinant protein expression

Author:

Simas Rodrigo G12,Pessoa Junior Adalberto12,Long Paul F12ORCID

Affiliation:

1. Faculty of Life Sciences & Medicine , King's College London, 150 Stamford Street, London SE1 9NH, UK

2. Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , Av. Prof. Lineu Prestes, 580, B16, 05508-000 São Paulo , SP, Brazil

Abstract

Abstract   Coupling transcription of a cloned gene to the lac operon with induction by isopropylthio-β-galactoside (IPTG) has been a favoured approach for recombinant protein expression using Escherichia coli as a heterologous host for more than six decades. Despite a wealth of experimental data gleaned over this period, a quantitative relationship between extracellular IPTG concentration and consequent levels of recombinant protein expression remains surprisingly elusive across a broad spectrum of experimental conditions. This is because gene expression under lac operon regulation is tightly correlated with intracellular IPTG concentration due to allosteric regulation of the lac repressor protein (lacY). An in-silico mathematical model established that uptake of IPTG across the cytoplasmic membrane of E. coli by simple diffusion was negligible. Conversely, lacY mediated active transport was a rapid process, taking only some seconds for internal and external IPTG concentrations to equalize. Optimizing kcat and KM parameters by targeted mutation of the galactoside binding site in lacY could be a future strategy to improve the performance of recombinant protein expression. For example, if kcat were reduced whilst KM was increased, active transport of IPTG across the cytoplasmic membrane would be reduced, thereby lessening the metabolic burden on the cell and expediating accumulation of recombinant protein. The computational model described herein is made freely available and is amenable to optimize recombinant protein expression in other heterologous hosts. One-Sentence Summary A computational model made freely available to optimize recombinant protein expression in Escherichia coli other heterologous hosts.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3