Effect of selinexor on lipogenesis in virus-positive Merkel cell carcinoma cell lines

Author:

Landes Jennifer R1ORCID,Bartley Brooke R1,Moore Stephen A1,He Qin1,Simonette Rebecca1,Rady Peter L1,Doan Hung Q2,Tyring Stephen K1

Affiliation:

1. Department of Dermatology, The University of Texas McGovern Medical School , Houston, TX , USA

2. Department of Dermatology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA

Abstract

Abstract Background Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine cutaneous carcinoma aetiologically linked to the Merkel cell polyomavirus (MCPyV). Immune checkpoint inhibitors are currently the first-line therapy for metastatic MCC; however, the treatment is effective in only about half of patients, highlighting the need for alternative therapies. Selinexor (KPT-330) is a selective inhibitor of nuclear exportin 1 (XPO1) and has been shown to inhibit MCC cell growth in vitro, but the pathogenesis has not been established. Decades of research have established that cancer cells significantly upregulate lipogenesis to meet an increased demand for fatty acids and cholesterol. Treatments that inhibit lipogenic pathways may halt cancer cell proliferation. Aim To determine the effect of increasing doses of selinexor on fatty acid and cholesterol synthesis in MCPyV-positive MCC (MCCP) cell lines and aid in elucidating the mechanism by which selinexor prevents and reduces MCC growth. Methods MKL-1 and MS-1 cell lines were treated with increasing doses of selinexor for 72 h. Protein expression quantification was determined using chemiluminescent Western immunoblotting and densitometric analysis. Fatty acids and cholesterol were quantified using free fatty acid assay and cholesterol ester detection kits. Results Selinexor causes statistically significant reductions of the lipogenic transcription factors sterol regulatory element-binding proteins 1 and 2, and lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, squalene synthase and 3β-hydroxysterol Δ-24-reductase in a dose-dependent manner in two MCCP cell lines. Although inhibiting the fatty acid synthesis pathway results in meaningful decreases in fatty acids, the cellular cholesterol levels did not demonstrate such reductions. Conclusion For patients with metastatic MCC refractory to immune checkpoint inhibitors, selinexor may provide clinical benefit through the inhibition of the lipogenesis pathway; however, further research and clinical trials are needed to evaluate these findings.

Publisher

Oxford University Press (OUP)

Subject

Dermatology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3