Evolutionary history of CAM photosynthesis in Neotropical Clusia: insights from genomics, anatomy, physiology and climate

Author:

Luján Manuel1ORCID,Oleas Nora H2,Winter Klaus3

Affiliation:

1. Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK

2. Facultad de Ciencias del Medio Ambiente y Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador

3. Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama

Abstract

Abstract Clusia is a remarkable genus of Neotropical woody plants as its members engage in either C3 photosynthesis or employ, to varying degrees, crassulacean acid metabolism (CAM) photosynthesis. Information about the evolutionary history of CAM in Clusia is scarce. Restriction site-associated sequencing of 64 species (20% of the genus) provided strong support for most of the previously recognized nine lineages. Ancestral reconstruction using maximum parsimony or maximum likelihood under a one-rate model suggested that CAM evolved at least four times independently from a most recent common ancestor (MRCA) with C3, whereas a maximum likelihood two-rate model suggested that CAM was already present in the MRCA followed by reversions to C3 in several lineages. Phylogenetic generalized least square analysis assessed variation in seven leaf anatomical traits and CAM activity measured as δ 13C. Results indicate that CAM is highly correlated with palisade mesophyll layer thickness and cell size. In addition, correlation between 19 bioclimatic variables and δ 13C was evaluated. It was found that CAM is positively correlated with habitats with a more severe dry season and greater precipitation seasonality. Since CAM is weakly and/or only periodically expressed in many Clusia spp., and thus not readily reflected in δ 13C, future analysis of phylogenetically-informed CAM expression in Clusia must include physiological measurements such as CO2 exchange and/or diel changes in leaf acidity for each species under investigation.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3