A Chromosome-Level Genome Assembly of the Parasitoid Wasp, Cotesia glomerata (Hymenoptera: Braconidae)

Author:

Pinto Brendan J12ORCID,Weis Jerome J2,Gamble Tony234ORCID,Ode Paul J5ORCID,Paul Ryan5,Zaspel Jennifer M23

Affiliation:

1. Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA

2. Milwaukee Public Museum, Milwaukee, WI, USA

3. Department of Biological Sciences, Marquette University, Milwaukee, WI, USA

4. Bell Museum of Natural History, University of Minnesota, St Paul, MN, USA

5. Colorado State University, Ft. Collins, CO, USA

Abstract

Abstract Hymenopterans make up about 20% of all animal species, but most are poorly known and lack high-quality genomic resources. One group of important, yet understudied hymenopterans are parasitoid wasps in the family Braconidae. Among this understudied group is the genus Cotesia, a clade of ~1,000 species routinely used in studies of physiology, ecology, biological control, and genetics. However, our ability to understand these organisms has been hindered by a lack of genomic resources. We helped bridge this gap by generating a high-quality genome assembly for the parasitoid wasp, Cotesia glomerata (Braconidae; Microgastrinae). We generated this assembly using multiple sequencing technologies, including Oxford Nanopore, whole-genome shotgun sequencing, and 3D chromatin contact information (HiC). Our assembly is one of the most contiguous, complete, and publicly available hymenopteran genomes, represented by 3,355 scaffolds with a scaffold N50 of ~28 Mb and a BUSCO score of ~99%. Given the genome sizes found in closely related species, our genome assembly was ~50% larger than expected, which was apparently induced by runaway amplification of 3 types of repetitive elements: simple repeats, long terminal repeats, and long interspersed nuclear elements. This assembly is another step forward for genomics across this hyperdiverse, yet understudied order of insects. The assembled genomic data and metadata files are publicly available via Figshare (https://doi.org/10.6084/m9.figshare.13010549).

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3