Genome Assembly of Salicaceae Populus deltoides (Eastern Cottonwood) I-69 Based on Nanopore Sequencing and Hi-C Technologies

Author:

Bai Shengjun1,Wu Hainan1,Zhang Jinpeng1,Pan Zhiliang1,Zhao Wei1,Li Zhiting1,Tong Chunfa1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China

Abstract

Abstract Populus deltoides has important ecological and economic values, widely used in poplar breeding programs due to its superior characteristics such as rapid growth and resistance to disease. Although the genome sequence of P. deltoides WV94 is available, the assembly is fragmented. Here, we reported an improved chromosome-level assembly of the P. deltoides cultivar I-69 by combining Nanopore sequencing and chromosome conformation capture (Hi-C) technologies. The assembly was 429.3 Mb in size and contained 657 contigs with a contig N50 length of 2.62 Mb. Hi-C scaffolding of the contigs generated 19 chromosome-level sequences, which covered 97.4% (418 Mb) of the total assembly size. Moreover, repetitive sequences annotation showed that 39.28% of the P. deltoides genome was composed of interspersed elements, including retroelements (23.66%), DNA transposons (6.83%), and unclassified elements (8.79%). We also identified a total of 44 362 protein-coding genes in the current P. deltoides assembly. Compared with the previous genome assembly of P. deltoides WV94, the current assembly had some significantly improved qualities: the contig N50 increased 3.5-fold and the proportion of gaps decreased from 3.2% to 0.08%. This high-quality, well-annotated genome assembly provides a reliable genomic resource for identifying genome variants among individuals, mining candidate genes that control growth and wood quality traits, and facilitating further application of genomics-assisted breeding in populations related to P. deltoides.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3