Sporadic Genetic Connectivity among Small Insular Populations of the Rare Geoendemic Plant Caulanthus amplexicaulis var. barbarae (Santa Barbara Jewelflower)

Author:

Burrell A Millie1,Goddard Jeffrey H R1,Greer Paul J2,Williams Ryan J1,Pepper Alan E1

Affiliation:

1. Department of Biology, Texas A&M University, College Station, TX

2. Midland School, Los Olivos, CA

Abstract

Abstract Globally, a small number of plants have adapted to terrestrial outcroppings of serpentine geology, which are characterized by soils with low levels of essential mineral nutrients (N, P, K, Ca, Mo) and toxic levels of heavy metals (Ni, Cr, Co). Paradoxically, many of these plants are restricted to this harsh environment. Caulanthus ampexlicaulis var. barbarae (Brassicaceae) is a rare annual plant that is strictly endemic to a small set of isolated serpentine outcrops in the coastal mountains of central California. The goals of the work presented here were to 1) determine the patterns of genetic connectivity among all known populations of C. ampexlicaulis var. barbarae, and 2) estimate contemporary effective population sizes (Ne), to inform ongoing genomic analyses of the evolutionary history of this taxon, and to provide a foundation upon which to model its future evolutionary potential and long-term viability in a changing environment. Eleven populations of this taxon were sampled, and population-genetic parameters were estimated using 11 nuclear microsatellite markers. Contemporary effective population sizes were estimated using multiple methods and found to be strikingly small (typically Ne < 10). Further, our data showed that a substantial component of genetic connectivity of this taxon is not at equilibrium, and instead showed sporadic gene flow. Several lines of evidence indicate that gene flow between isolated populations is maintained through long-distance seed dispersal (e.g., >1 km), possibly via zoochory.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,Biotechnology

Reference113 articles.

1. Genetic diversity and population structure of the serpentine endemic Ni hyperaccumulator Alyssum lesbiacum;Adamidis;Plant Syst Evol,2014

2. Genetic structure in the nonrewarding, bumblebee-pollinated orchid Calypso bulbosa;Alexandersson;Heredity (Edinb),2000

3. Brassicaceae.;Al-Shehbaz,2010

4. Phylogenetic patterns of endemism and diversity;Anacker,2011

5. Portfolio conservation of metapopulations under climate change;Anderson;Ecol Appl,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3