A De Novo MITF Deletion Explains a Novel Splashed White Phenotype in an American Paint Horse

Author:

Magdesian K Gary1ORCID,Tanaka Jocelyn2,Bellone Rebecca R23

Affiliation:

1. Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California—Davis, Davis, CA

2. Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California—Davis, Davis, CA

3. Department of Population Health and Reproduction, School of Veterinary Medicine, University of California—Davis, Davis, CA

Abstract

Abstract Splashed white is a coat color pattern in horses characterized by extensive white patterning on the legs, belly, and face often accompanied by blue eyes and deafness. Three mutations in microphthalmia-associated transcription factor (MITF) and two mutations in Paired Box 3 (PAX3) have been identified that explain splashed white patterns (SW1–SW5). An American Paint Horse stallion with a splashed white phenotype and blue eyes, whose parents were not white patterned, was negative for the 5 known splashed white variants and other known white spotting alleles. This novel splashed white phenotype (SW6) was hypothesized to be caused by a de novo mutation in MITF or PAX3. Analysis of whole-genome sequencing using the EquCab3.0 reference genome for comparison identified an 8.7 kb deletion in MITF on ECA16 (NC_009159.3:g.21551060-21559770del). The deletion encompassed part of intron 7 through the 3′ UTR of exon 9 of MITF, including the helix-loop-helix DNA-binding domain (ENSECAT00000006375.3). This variant is predicted to truncate protein and impair binding to DNA. Sanger sequencing confirmed the stallion was heterozygous for the MITF deletion. No single nucleotide polymorphisms (SNPs) or structural variants were identified in PAX3 or any of the other candidate genes that were unique to the stallion or predicted to affect protein function. Genotyping five of the stallion’s splashed white offspring, including one all white foal, found that they were also heterozygous for the deletion. Given the role of MITF in producing white pattern phenotypes, and the predicted deleterious effect of this mutation, this 8.7 kb deletion is the likely causal variant for SW6.

Funder

Roberta A and Carla Henry Endowed Chair in Emergency Medicine and Critical Care

Veterinary Genetics Laboratory, University of California, Davis

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3