Isolation and Lack of Potential Mates may Threaten an Endangered Arid-Zone Acacia

Author:

Forrest Cairo N1,Roberts David G1,Denham Andrew J12,Ayre David J1

Affiliation:

1. School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia

2. New South Wales Office of Environment and Heritage, Hurstville, New South Wales, Australia

Abstract

Abstract Clonality may provide reproductive assurance for many threatened plants while limiting sexual reproductive success either through energetic tradeoffs or because clones are self-incompatible. Most stands of the Australian arid-zone plant Acacia carneorum, flower annually but low seed set and an absence of sexual recruitment now suggest that this species and other, important arid-zone ecosystem engineers may have low genotypic diversity. Indeed, our recent landscape-scale genetic study revealed that stands are typically monoclonal, with genets usually separated by kilometers. An inability to set sexually produced seed or a lack of genetically diverse mates may explain almost system-wide reproductive failure. Here, using microsatellite markers, we genotyped 100 seeds from a rare fruiting stand (Middle-Camp), together with all adult plants within it and its 4 neighboring stands (up to 5 km distant). As expected, all stands surveyed were monoclonal. However, the Middle-Camp seeds were generated sexually. Comparing seed genotypes with the single Middle-Camp genotype and those of genets from neighboring and other regional stands (n = 26), revealed that 73 seeds were sired by the Middle-Camp genet. Within these Middle-Camp seeds we detected 19 genotypes in proportions consistent with self-fertilization of that genet. For the remaining 27 seeds, comprising 8 different genotypes, paternity was assigned to the nearest neighboring stands Mallee and Mallee-West, approximately 1 km distant. Ironically, given this species’ vast geographic range, a small number of stands with reproductively compatible near neighbors may provide the only sources of novel genotypes.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3