Genomic Approaches Identify Novel Gene Associations with Out of Season Lambing in Sheep

Author:

Posbergh Christian J1ORCID,Thonney Michael L1,Huson Heather J1ORCID

Affiliation:

1. Department of Animal Science, Cornell University, Ithaca, NY

Abstract

Abstract Sheep are seasonally polyestrous, traditionally breeding when the day length shortens in the autumn. The changing photoperiod stimulates reproductive hormones through a series of chemical pathways, ultimately leading to cyclicity. Some breeds of sheep, such as the Polypay and Dorset, have been selected for reduced seasonality and can lamb year-round. Despite this selection, there is still variation within these breeds in the ability to lamb out of season. The identification of out of season lambing quantitative trait loci has the potential to improve genetic progress using genomic selection schemes. Association studies, fixation index (FST), and runs of homozygosity (ROH) were evaluated to identify regions of the genome that influence the ability of ewes to lamb out of season. All analyses used genotypic data from the Illumina Ovine HD beadchip. Genome-wide associations were tested both across breeds in 257 ewes and within the Dorset and Polypay breeds. FST was measured across breeds and between UK and US Dorsets to assess population differences. ROH were estimated in ewes to identify homozygous regions contributing to out of season lambing. Significant associations after multiple testing correction were found through these approaches, leading to the identification of several candidate genes for further study. Genes involved with eye development, reproductive hormones, and neuronal changes were identified as the most promising for influencing the ewe’s ability to lamb year-round. These candidate genes could be advantageous for selection for improved year-round lamb production and provide better insight into the complex regulation of seasonal reproduction.

Funder

Cornell Vertebrate Genomics seed funding

American Sheep Industry Let’s Grow Program

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3