Simultaneous Quantitation of Paracetamol and Lornoxicam in the Presence of Five Related Substances and Toxic Impurities by a Selective HPLC–DAD Method

Author:

El-Yazbi Amira F1ORCID,Guirguis Karin M2ORCID,Bedair Mona M1,Belal Tarek S1ORCID

Affiliation:

1. University of Alexandria, Faculty of Pharmacy, Pharmaceutical Analytical Chemistry Department, Elmessalah , 21521 Alexandria, Egypt

2. Pharos University in Alexandria, Faculty of Pharmacy and Drug Manufacturing, Pharmaceutical Chemistry Department , Canal El-Mahmoudia Street , Alexandria, Egypt

Abstract

Abstract Objective This research describes the simultaneous quantitation of paracetamol (PRM) and lornoxicam (LRX) with five of their related substances and toxic impurities, including, 4-nitrophenol (NTP), 4-aminophenol (AMP), 4-chloroacetanilide (CAC), N-phenylacetamide (NPA), and 2-aminopyridine (APD) using a specific HPLC–diode array detector (DAD) method. Methods The chromatographic separation involves the use of a XTerra C18 column as the stationary phase and a mobile phase consisting of acetonitrile and 0.025 M phosphate buffer (pH 6). The separation was performed using gradient elution mode at 1.0 mL/min flow rate and detection at 260 nm for the determination of PRM and LRX. For detecting PRM and LRX in the presence of their toxic impurities, 270 nm was used. Validation of the suggested HPLC method was accomplished with regard to linearity, ranges, detection and quantitation limits, robustness, accuracy, precision, and specificity. Results Excellent resolution of the mixture components was accomplished at retention times 4.2, 4.8, 7.4, 11.1, 13.5, 14.7, and 15.3 min for APD, AMP, PRM, NPA, LRX, NTP, and CAC, respectively. Linearity was established for PRM and LRX within concentration ranges of 10–100 and 10–60 µg/mL, respectively. The correlation coefficients obtained were >0.9997. The suggested method was confirmed to be a specific stability-indicating through the selective separation of PRM and LRX from their related substances, degradants, and impurities. Conclusion The proposed method was successfully utilized for the sensitive and selective determination of PRM and LRX in their pharmaceutical formulation. Highlights To the best of our knowledge, this is the first impurity profiling assay method for this combination in the presence of five of their toxic related substances and impurities. Taking into consideration that at least two of the studied impurities (AMP and APD) are actually reported degradation products for the main drugs, the suggested method can be considered stability-indicating as well.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3