MALDI-TOF Mass Spectrometry and 16S rRNA Gene Sequence Analysis for the Identification of Foodborne Clostridium Spp

Author:

Sulaiman Irshad M1ORCID,Miranda Nancy1,Simpson Steven1

Affiliation:

1. U.S. Food and Drug Administration, Microbiological Sciences Branch, Southeast Food and Feed Laboratory, Office of Regulatory Science, Office of Regulatory Affairs, 60 8th St NE, Atlanta, GA, 30309, USA

Abstract

Abstract Background Clostridium is a genus of Gram-positive, spore-forming, anaerobic bacteria comprising approximately 100 species. Some Clostridium spp. (C. botulinum, C. perfringens, C. tetani, and C. difficile) have been recognized to cause acute food poisoning, botulism, tetanus, and diarrheal illness in humans. Thus, rapid identification of Clostridium spp. is critical for source-tracking of contaminated food and to understand the transmission dynamics of these foodborne pathogens. Objective This study was carried out to rapidly identify Clostridium-like isolates by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS and rRNA sequencing methods. Method Thirty-three Clostridium-like isolates were recovered from various baby food and surveillance samples. Species identification of these isolates was accomplished using the VITEK MS system. Sequence characterization of the 16S rRNA region was done on an ABI 3500xL Genetic Analyzer. Results The VITEK MS system identified 28 of the 33 Clostridium-like isolates with a high confidence value (99.9%); no identification was observed for the remaining five isolates. Nucleotide sequencing of the 16S rRNA region identified all 33 Clostridium-like isolates. Furthermore, while characterizing the 16S rRNA gene, 11 distinct Clostridium spp. (Clostridium aciditolerans, Clostridium aerotolerans, Clostridium argentinense, Clostridium beijerinckii, Clostridium bifermentans, Clostridium butyricum, Clostridium cochlearium, Clostridium difficile, Clostridium perfringens, Clostridium sporogenes, and Clostridium subterminale) were recognized among the 33 Clostridium-like isolates. One of the Clostridium-like isolates was identified as Citrobacter amalonaticus by both diagnostic methods. The generated 16S rRNA sequences matched completely (100%) with sequences available in GenBank for Clostridium and Citrobacter species. Species identification attained using the VITEK MS for the Clostridium-like isolates was comparable to that from the 16S rRNA sequencing-based data. Conclusions The VITEK MS and 16S rRNA sequence analysis can be implemented in the species identification of Clostridium spp. isolates of public health importance. Highlights MALDI-TOF MS and 16S rRNA sequencing can be used in the species identification of Clostridium species.

Funder

ORA Office of Regulatory Science

Nicky Sulaiman of Biotechnology Core Facility Branch

Division of Scientific Resources

U.S. Centers for Disease Control and Prevention

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3