Analytical Quality by Design-Driven RP-HPLC Method Conditions to Concomitantly Determine Cinnarizine and Morin Hydrate in Combined Drug Solution and Dual Drug-Loaded Formulations

Author:

Goswami Abhinab1ORCID,Rahman Syed Nazrin R1ORCID,Pawde Datta M1ORCID,Shunmugaperumal Tamilvanan1ORCID

Affiliation:

1. National Institute of Pharmaceutical Education and Research–Guwahati, Department of Pharmaceutics , Sila Katamur (Halugurisuk), Changsari, Kamrup , Guwahati, Assam 781101, India

Abstract

Abstract Background The replacement of traditional oils with a camphor and menthol-based eutectic mixture is done to prepare oil-less emulsion-like dispersions for co-delivery of cinnarizine (CNZ) and morin hydrate (MH) for managing Meniére’s disease (MD). Since two drugs are loaded into the dispersions, the development of a suitable reverse phase–high performance liquid chromatography (RP-HPLC) method for their simultaneous analysis becomes inevitable. Objective By applying the analytical quality by design (AQbD) approach, the RP-HPLC method conditions were optimized for the concomitant determination of two drugs. Methods The systematic AQbD started with identifying critical method attributes (CMA) through an Ishikawa fishbone diagram, risk estimation matrix, and risk priority number-based failure mode effect analysis followed by screening using fractional factorial design and optimization by face-centered central composite design. The concomitant determination of two drugs by the optimized RP-HPLC method condition was substantiated via specificity checking using combined drug solution, drug entrapment efficiency, and in vitro release of the two drugs from emulsion-like dispersions. Results The AQbD optimized RP-HPLC method conditions revealed the retention time for CNZ and MH at 5.017 and 5.323, respectively. The studied validation parameters were found within the ICH-prescribed limits. Exposing the individual drug solutions to acidic and basic hydrolytic conditions yielded extra chromatographic peaks for MH, probably due to the degradation of MH. The DEE % values of 87.40 ± 4.70 and 74.79 ± 2.94, respectively, were noticed for CNZ and MH in emulsion-like dispersions. More than 98% CNZ and MH release was occurred from emulsion-like dispersions within 30 min post-dissolution in artificial perilymph. Conclusions Overall, the AQbD approach could be helpful for systematic optimization of RP-HPLC method conditions to estimate concomitantly other therapeutic moieties. Highlights The proposed article shows the successful application of AQbD for the optimization of RP-HPLC method conditions to concomitantly estimate CNZ and MH in combined drug solution and dual-drug-loaded emulsion-like dispersions.

Funder

Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India

Department of Biotechnology

National Mission on Himalayan Studies

Ministry of Environment, Forest, and Climate Change

G.B. Pant National Institute of Himalayan Environment & Sustainable Development

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3