Development of Green and High-Throughput Microwell Spectrophotometric Methods for Determination of Galidesivir in Bulk Drug and Dosage Forms Based on Simple Oxidimetric Reactions With Inorganic Agents

Author:

Darwish Ibrahim A1ORCID,Alzoman Nourah Z1,Abuhejail Reem M1

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University, P.O. Box 2457 , Riyadh 11451, Saudi Arabia

Abstract

Abstract Background Galidesivir hydrochloride (GDV) is a new potent and safe antiviral drug used for the treatment of a broad spectrum of viral diseases, including COVID-19. In the literature, no analytical method exists for the determination of GDV in bulk or dosage form. Objective The objective of this study was the investigation of oxidation reactions of GDV with five inorganic oxidizing reagents and the employment of the reactions in the development of five green microwell spectrophotometric methods (MW-SPMs) with simple procedure and high throughputs for determination of GDV in its bulk and dosage forms (capsules). Methods The reactions were carried out in 96-well plates, and the absorbances of reaction solutions were measured by an absorbance microplate reader. Variables influencing the reactions were carefully investigated and optimized. Results Under the refined optimum conditions, Beer’s law with excellent correlation coefficients (0.9992–0.9997) was followed in GDV concentrations in a general range of 5–700 µg/mL, and the limits of detection were ≥1.8 µg/mL. All validation parameters of all methods were acceptable. The methods were successfully applied to the analysis of GDV in bulk drug and capsules with high accuracy and precision; the recovery percentages were 98.6–101.2 ± 0.58–1.14%. The greenness of MW-SPMs was evaluated by three comprehensive metric tools, which demonstrated the adherence of MW-SPMs to the principles of the green analytical chemistry (GAC) approach. Conclusions The proposed MW-SPMs combined the advantages of microwell-based practice and the use of common laboratory reagents for the analysis. The advantages of microwell analysis were the high throughput, readily available for semi-automation, reduced samples/reagents volume, precise measurements, and versatility. The advantages of using common laboratory reagents were the availability, consistency, compatibility, safety, and cost-effectiveness. Highlights Overall, the proposed MW-SPMs are versatile, valuable tools for the quantitation of GDV during its pharmaceutical manufacturing.

Funder

King Saud University

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3