Affiliation:
1. Anadolu University, Faculty of Pharmacy, Department of Analytical Chemistry , 26470 Eskisehir, Türkiye
2. Anadolu University, Faculty of Pharmacy, Central Analysis Laboratory , 26470 Eskişehir, Türkiye
3. Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry , 26470 Eskisehir, Türkiye
Abstract
Abstract
Background
Flibanserin (FLB) was first synthesized as an antidepressant drug; however, due to its enhancing effects on sexual activity, it was approved for treatment of hypoactive sexual desire disorder in women in 2015.
Objective
The aim of this study was to develop a new and fully validated HPLC method for analysis of FLB in pharmaceutical formulations besides its degradation products, and identification of possible formation mechanisms by using HPLC-DAD-ESI-IT-TOF-MSn.
Method
The HPLC separation was achieved in a Supelco Ascentis® Express series phenyl hexyl column (100 × 4.6 mm, ID 2.7 µm). The mobile phase was acetonitrile–ammonium acetate solution (50:50, v/v, 10 mM, pH 5.4) mixture, which was pumped at the rate of 0.5 mL/min. Chromatography, detection, and structural identification was performed by using a LCMS-IT-TOF instrument (Shimadzu, Japan).
Results
1–(2-(4–(3-hydroxy-5-(trifluoromethyl)phenyl)piperazine-1-yl)ethyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one is proposed as a novel degradation product, with a mass of 407.1695 and a formula of C20H21F3N4O2 with a margin of error about 0.001 ppm. The developed method is applicable with 98% accuracy within the 2.5–50.0 µg/mL range. The LOD and LOQ were about 500 ng/mL and 1.50 µg/mL, respectively. The transferability and variation between laboratories were tested by inter-laboratory comparison and evaluated with one-way analysis of variance.
Conclusions
A novel FLB degradation product, which was produced under oxidative forced degradation conditions was observed and identified for the first time; in addition, the formation kinetics of the degradation product besides decomposition of FLB was studied. Furthermore, an inter-laboratory comparison was carried out, and application of the proposed method on a pseudo Addyi® (Sprout Pharmaceuticals, Inc.) sample was tested using both instrument configurations.
Highlights
A novel stability-indicating assay method was developed and fully validated according to the International Council on Harmonization (Q2) R1 for the analysis of FLB in the pharmaceutical preparations. A new degradation product was identified in the oxidative forced degradation condition and characterized using HPLC–DAD–ESI-IT-TOF-MS3. Moreover, the possible mechanism and the formation kinetic of the degradation product were revealed. In addition, the developed method was transferred to another LC-PDA instrument for inter-laboratory comparison. Finally, the current method was applied to a pseudo formulation of Addy in both instruments, and ANOVA was applied for evaluation.
Funder
Anadolu University Scientific Research Projects Fund Commission
Publisher
Oxford University Press (OUP)
Subject
Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry