Simultaneous UPLC Assay for Oxitropium Bromide and Formoterol Fumarate Dihydrate in Pressurized Metered Dose Inhaler Products for Chronic Obstructive Pulmonary Disease

Author:

Seckin Serdar1ORCID,Saglik Aslan Serap2

Affiliation:

1. Istanbul University Institute of Health Sciences, Analytical Chemistry , 34126 Beyazıt, Istanbul, Türkiye

2. Istanbul University, Faculty of Pharmacy, Department of Analytical Chemistry , 34116 Beyazıt Istanbul, Türkiye

Abstract

Abstract Backround Oxitropium bromide (OB) and formoterol fumarate dihydrate (FFD) are inhaler molecules that are widely used in the treatment of chronic lung diseases. Objective The goal of this work was to create a reversed phase–ultra performance liquid chromatography (RP-UPLC) technique for assay and identification of OB and FFD, as well as identification and estimate of its associated compounds in pressurized metered dose inhaler product (pMDI). Method Separation of oxitropium and formoterol peaks were enhanced on a C18 (50 × 2.1 mm × 1.7 μm) UPLC column with ethylene-bridged-hybrid technology, The mobile phase consists of buffer (0.07 M KH2PO4) and acetonitrile (80:20, v/v). The detector wavelength of 210 nm, flow rate of pump 0.6 mL/min, and oven temperature for column were set at 25°C. The injection volume was 10 μL. The method run time was 2 min. The mobile phase was used as the solvent. Results Retention times (RTs) were 0.5 min for OB and 1.0 min for FFD. The assay analysis was linear range for all analytes within the range for concentrations 0.03—14.8 µg/mL of OB, 0.01–0.88 µg/mL of FFD. LOD values and LOQ values 0.009 and 0.026 µg/mL for OB and 0.003 and 0.009 µg/mL for FFD, respectively. Recoveries were obtained at 96.3% for OB and 97.2% for FFD. Precisions values were (as RSD, %) ≤1.5%. Conclusions With the UPLC method developed and validated according to the current ICH guidelines, it is possible to simultaneously detect OB and FFD of assay analysis in pMDI products accurately, precisely and selectively, independent of the matrix effect. Highlights The present method is the first method in the literature based on the UPLC method for this purpose. The UPLC method is a time-saving method, it provides a faster and cheaper technique than the high performance liquid chromatography (HPLC) method.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3