Determination of Tetracycline Using Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction Based on Solidification of Floating Organic Droplet Followed by HPLC–UV System

Author:

Rahimi Moghadam Mojtaba1,Zargar Behrooz1ORCID,Rastegarzadeh Saadat1

Affiliation:

1. Shahid Chamran University of Ahvaz, Faculty of Sciences, Department of Chemistry, Ahvaz, Iran

Abstract

Abstract Background Tetracyclines (TCs) are a group of broad-spectrum antibiotics that may be used to control bacterial diseases in humans or are applied as feed additives to enhance growth in farm animals. TCs are released into the aquatic environment via different pathways. Many analytical methods combined with a preconcentration step have been introduced for the determination of TC in various environmental samples. Objective The objective this paper is developing reliable analytical methods for determination of TC trace in various environmental samples. Method In the present work, combined ultrasound-assisted and dispersive liquid–liquid microextraction according to the solidification of floating organic drop as a sample preconcentration procedure for determining TC hydrochloride HPLC in water and serum samples was used. Results A series of parameters, including the type and volume of disperser and extraction solvents, salt effect, extraction time, and pH of solution influencing the extraction efficiency of UA-DLLME-SFO was examined. Enrichment factors were in the range of 125–137 for TC hydrochloride under optimum conditions. The linear range was calculated from 0.005 to 3 mg/L and LOD at 0.002 mg/L. RSDs were in the range of 2.7 to 3.2 (n = 5). The UA-DLLME-SFO method used in water and serum samples revealed good extraction recoveries with RSD of 2.7–4.3%. Conclusions This method significantly decreased the organic solvent volume from 3 mL to 90 µL, also LOD and linear ranges were lower than or almost close to levels obtained in other research studies. In this procedure, an ultrasound bath enhanced the mixing and contact between the sample solution and the extraction solvent.

Funder

Shahid Chamran University of Ahvaz

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3