Quantification of 3,4-Dimethyl-1H-Pyrazole Using Ion-Pair LC–MS/MS on a Reversed-Phase Column

Author:

Doran Gregory S1ORCID,Condon Jason R1ORCID,Kaveney Brooke F1ORCID

Affiliation:

1. Gulbali Institute, Charles Sturt University, School of Agricultural, Environmental and Veterinary Sciences , Wagga Wagga, NSW 2678, Australia

Abstract

Abstract Background Few methods exist for the analysis of the soil nitrification inhibitor 3,4-dimethyl-1H-pyrazole (3,4-DMP), which is a pesticide with the ability to reduce the production of nitrogenous greenhouse gases in soils as a result of fertilizer application. Due to its small size and polar nature, 3,4-DMP can be difficult to retain on an LC column, which makes diversion of a co-extracted soil matrix away from the MS/MS impossible. Objective The current study aims to better control the retention time (RT) of 3,4-DMP. Additionally, 3,4-DMP-15N2 was synthesized and used as an internal standard for the soil extraction of 3,4-DMP. Methods Perfluoroalkanoic acids were used as ion-pair reagents and were compared for their abilities to improve peak shape and RT, to better separate 3,4-DMP from the soil matrix without the need for cleanup during soil extraction. Results RTs increased with both the carbon number and the concentration of the perfluoroalkanoic acid, and this improved peak shape and height. Perfluorooctanoic acid performed best, and improved peak height (PH) and shape were obtained by increasing the flow rate, resulting in a better S/N than from formic acid. The method provided a 10-fold improvement limit of quantitation on the most sensitive existing method and the use of 3,4-DMP-15N2 as an internal standard resulted in recoveries of 101–107%. Conclusion Ion-pair reagents drastically increased the retention of 3,4-DMP and allowed the re-use of old LC columns that may otherwise be discarded. Improved separation of 3,4-DMP from the soil matrix allowed much of the matrix to be diverted from the MS/MS spray chamber. Highlights Greater control of 3,4-DMP retention by the LC column resulting in the ability to separate 3,4-DMP from the soil matrix. The inclusion of ion-pair reagents only in the aqueous phase reduced ionization suppression of the analytes in the MS source.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3