A Novel Ratio Probe Based on Mixing of Thiocyanuric Acid- Enhanced Silver Nanoclusters with N, S Co-Doped Carbon Quantum Dots for Detecting Sodium 2,3-Dimercapto Propanesulfonic Acid

Author:

Long Fei1ORCID,Zhu Qi1ORCID,Li Yingping2ORCID

Affiliation:

1. School of Public Health, North Sichuan Medical College , Nanchong 637000, China

2. School of Pharmacy, North Sichuan Medical College , Nanchong 637000, China

Abstract

Abstract Background The ratio fluorescent probe (RF-probe) has the characteristics of self-calibration and eliminating the influence of experimental factors (such as probe concentration, excitation intensity stability, and solution environment) in quantitative assays based on the linear relationship between the intensity ratio of two emission peaks and the concentration of analyte, especially in a complex biological matrix. Objective High-luminescent Ag nanoclusters (AgNCs) were prepared at room temperature due to aggregation-induced emission (AIE) through the incorporation of trithiocyanuric acid (TA). Subsequently, a new RF-probe based on mixing of AgNCs-TA with nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs) was prepared for sensitively and selectively assaying sodium 2, 3-dimercaptopropane-1-sulfonate (DMPS). Methods The fluorescence of N, S-CQDs was quenched in the presence of the AgNCs-TA mainly deriving from the inner filter effect (IFE), and its fluorescence intensities at 440 and 650 nm could recover and drop upon the addition of DMPS (λex = 370 nm). Results The RF-probe enables DMPS to be detected by fluorometry with a linear response in the 0.67–30.0 μmol/L concentration range and a 54.7 nmol/L detection limit (at 3σ/slope). At the same time, we also used the labeled recovery method to confirm the reliability of the method. The recoveries were 97.93–106.33%, and the corresponding standard deviations (RSD) were less than 1.87%. Conclusion The N, S-CQDs/AgNCs-TA RF-probe can also semi-quantitatively monitor DMPS by naked eyes. Highlights The mechanism of fluorescence enhancement of the AgNCs by TA also were investigated by the N, S-CQDs/AgNCs-TA-DMPS system. What’s more, the RF-probe of N, S-CQDs/AgNCs-TA was successfully utilized to monitor DMPS in real samples.

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3