Enhancing the Sustainability of Eco-Friendly Potentiometric Ion-Selective Electrodes for Stability-Indicating Measurement of Ethamsylate: Application in Bulk and Pharmaceutical Formulations

Author:

Monir Hany H1ORCID,Mohamed Heba A2ORCID,Badawy Amr M1ORCID,Nebsen Marianne1ORCID,Nessim Christine K3ORCID

Affiliation:

1. Analytical Chemistry Department, Faculty of Pharmacy, Cairo University , 11562 Cairo, Egypt

2. Pharmaceutical Patent Examiner, Egyptian Patent Office, Academy of Scientific Research and Technology , 11516 Cairo, Egypt

3. Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University , 6th of October City , 12566 Cairo, Egypt

Abstract

Abstract Background Through the use of sustainable and green chemistry concepts, scientists need to decrease waste, conserve energy, and develop safe substitutes for hazardous compounds, all for protecting and benefiting society and the environment. Objective Four novel eco-friendly ion selective electrodes (ISE) were generated to determine Ethamsylate (ETM) in bulk powder and different pharmaceutical formulations. The present electrodes were fabricated to clearly distinguish ETM from a variety of inorganic, organic ions, sugars, some common drug excipients and the degradation product, hydroquinone (HQ) of ETM, and thus used for stability-indicating methods. Methods The electrodes fabrication was based on 2-nitrophenyl octyl ether (NPOE) that was employed as a plasticizer in electrodes 1, 2, and 3 within a polymeric matrix of polyvinyl chloride (PVC) except for electrode 4, in which dibutyl sebacate was used as a plasticizer. Electrodes 1 and 2 were fabricated using tetradodecylammonium bromide as an anionic exchanger, adding 4-sulfocalix-8-arene as an ionophore only to electrode 2 and preparing electrode 1 without incorporation of an ionophore. The fabrication of electrodes 3 and 4 was based on ethamsylate–tetraphenylborate (ETM–TPB) as an ion-association complex in a PVC matrix. The environmental sustainability was assessed using the green analytical procedure index (GAPI), and analytical greenness metric for sample preparation (AGREEprep). Results Electrodes 1 and 2 had linear dynamic ranges of 10−1–10−5 mol/L and 10−1–10−4 mol/L, respectively, with a Nernstian slope of 49.6 and 53.2 mV/decade, respectively. Electrodes 3 and 4 had linear dynamic ranges of 10−1–10−4 mol/L, with a Nernstian slope of 43.9 and 40.2 mV/decade, respectively. Conclusion The electrodes' selectivity coefficients showed good selectivity for ETM. The utility of 4-sulfocalix-8-arene as an ionophore had a significant influence on increasing the membrane sensitivity and selectivity of electrode 2 compared to other electrodes. Highlights Four novel eco-friendly ISEs were used for determination of ETM in bulk powder and different pharmaceutical formulations. Different experimental parameters were performed to optimize the determination conditions such as solvent mediators, dynamic response time, effect of pH, and temperature. Stability-indicating measurement of ETM in the presence of its degradate HQ and co-formulated drug tranexamic acid. Using new ecological assessment tools to determine whiteness and greenness profiles.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3