Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice

Author:

Li Jin-Jing12,Lin Xiang12,Tang Cheng3,Lu Ying-Qian1,Hu Xinde3,Zuo Erwei3,Li He3,Ying Wenqin3,Sun Yidi4,Lai Lu-Lu1,Chen Hai-Zhu1,Guo Xin-Xin1,Zhang Qi-Jie12,Wu Shuang1,Zhou Changyang3,Shen Xiaowen3,Wang Qifang3,Lin Min-Ting12,Ma Li-Xiang5,Wang Ning12,Krainer Adrian R6,Shi Linyu3,Yang Hui3,Chen Wan-Jin12

Affiliation:

1. Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China

2. Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China

3. Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

4. Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

5. Department of Anatomy, Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China

6. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA

Abstract

Abstract We here report a genome-editing strategy to correct spinal muscular atrophy (SMA). Rather than directly targeting the pathogenic exonic mutations, our strategy employed Cas9 and guide-sgRNA for the targeted disruption of intronic splicing-regulatory elements. We disrupted intronic splicing silencers (ISSs, including ISS-N1 and ISS + 100) of survival motor neuron (SMN) 2, a key modifier gene of SMA, to enhance exon 7 inclusion and full-length SMN expression in SMA iPSCs. Survival of splicing-corrected iPSC-derived motor neurons was rescued with SMN restoration. Furthermore, co-injection of Cas9 mRNA from Streptococcus pyogenes (SpCas9) or Cas9 from Staphylococcus aureus (SaCas9) alongside their corresponding sgRNAs targeting ISS-N1 into zygotes rescued 56% and 100% of severe SMA transgenic mice (Smn−/−, SMN2tg/−). The median survival of the resulting mice was extended to >400 days. Collectively, our study provides proof-of-principle for a new strategy to therapeutically intervene in SMA and other RNA-splicing-related diseases.

Funder

National Natural Science Foundation of China

Innovation of Science and Technology of Fujian Province

National Science and Technology major project

Shanghai City Committee of Science and Technology project

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3