Astaxanthin Attenuates the Changes in the Expression of miRNAs Involved in the Activation of Hepatic Stellate Cells (P02-011-19)

Author:

Bae Minkyung1,Lee Ji-Young1

Affiliation:

1. University of Connecticut

Abstract

Abstract Objectives MicroRNAs (miRNAs) are known to be associated with human diseases, including liver fibrosis. We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, has anti-fibrogenic effects in hepatic stellate cells (HSCs). HSCs are the major cell type responsible for the accumulation of extracellular matrix during the development of liver fibrosis once they are activated. The objective of this study was to compare miRNA expression profiles in activated HSCs (aHSCs) with those of quiescent HSCs (qHSCs) to identify miRNAs that may play crucial roles in the activation of HSCs. We also determined the effect of ASTX on the changes in miRNAs during HSC activation. Methods Primary mouse HSCs were cultured on uncoated plastic dishes for activation. The cells cultured for 1 day and 7 days after isolation served as qHSCs and aHSCs, respectively. qHSCs were treated with/without 25 µM ASTX during the activation for 7 days. miRNA expression profiles were determined using a miScript miRNA PCR array for mouse fibrosis. miRNAs whose expression were altered by more than 2-folds during HSC activation and by ASTX were selected. Their expression levels were further confirmed by quantitative real-time PCR in primary mouse and human HSCs and LX-2 cells, a human HSC cell line. Results Compared with qHSCs, the expression levels of 14 miRNAs and 23 miRNAs were increased and decreased by more than 2-folds, respectively, in aHSCs. Among 14 miRNAs increased in aHSCs, the expression of miR-192–5p, miR-382–5p, and miR-874–3p was reduced by ASTX. In addition, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and miR-101a-3p which were among the 23 miRNAs that were decreased in aHSCs. Of the selected 6 miRNAs, miR-382–5p was chosen for further analysis based on its high expression in HSCs and the magnitude of differences between groups. Unlike in primary mouse HSCs, the expression of miR-382–5p was not altered by transforming growth factor β1, a fibrogenic cytokine, or by ASTX in primary human HSCs and LX-2 cells, which are cells somewhat activated. Conclusions We identified candidate miRNAs that may be important for the activation of HSCs from qHSCs, which were also sensitive to ASTX. Of the candidate miRNAs, miR-382–5p is likely involved in the early stage of HSC activation, i.e., transdifferentiation of qHSCs to aHSCs. Funding Sources NIH.

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Food Science,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3