Neither low salivary amylase activity, cooling cooked white rice, nor single nucleotide polymorphisms in starch-digesting enzymes reduce glycemic index or starch digestibility: a randomized, crossover trial in healthy adults

Author:

Wolever Thomas M S12ORCID,El-Sohemy Ahmed1ORCID,Ezatagha Adish2,Zurbau Andreea12,Jenkins Alexandra L2

Affiliation:

1. Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada

2. INQUIS Clinical Research, Ltd (formerly GI Labs), Toronto, Ontario, Canada

Abstract

ABSTRACT Background It was suggested that low salivary-amylase activity (SAA) and cooling or stir-frying cooked starch decreases its digestibility and glycemic index. Objective We determined the effects of SAA, cooling, and single-nucleotide polymorphisms (SNPs) in the salivary amylase (AMY1), pancreatic amylase (AMY2A, AMY2B), maltase-glucoamylase (MGAM), and sucrase-isomaltase (SI) genes on starch digestibility and glycemic index of cooked polished rice. Methods Healthy subjects [pilot, n = 12; main, n = 20 with low-SAA (<50 U/mL), and n = 20 with high-SAA (>105 U/mL)] consumed test meals containing 25 g (pilot) or 50 g (main) available carbohydrate at a contract research organization using open-label (pilot) or assessor-blinded (main), randomized, crossover, Latin-square designs (trial registration: NCT03667963). Pilot-trial test meals were dextrose, freshly cooked polished rice, cooked rice cooled overnight, stir-fried hot rice, or stir-fried cold rice. Main-trial test meals were dextrose, dextrose plus 10 g lactulose, plain hot rice, or plain cold rice. In both trials, blood glucose was measured fasting and at intervals over 2 h. In the main trial, breath hydrogen was measured fasting and hourly for 6 h to estimate in vivo starch digestibility. Data were analyzed by repeated-measures ANOVA for the main effects of temperature and stir-frying (pilot trial) or the main effects of SAA and temperature (main trial) and their interactions. Effects of 24 single nucleotide polymorphisms (SNPs) were assessed separately. Means were considered to be equivalent if the 95% CI of the differences were within ±20% of the comparator mean for glucose response/glycemic index or ±7% for digestibility. Results Pilot: neither temperature nor stir-frying significantly affected glucose incremental AUC (primary endpoint, n = 12). Main: mean ± SEM glycemic index (primary endpoint, n = 40) was equivalent for low-SAA compared with high-SAA (73 ± 3 vs. 75 ± 4) and cold rice compared with hot rice (75 ± 3 vs. 70 ± 3). Estimated starch digestibility (n = 39) was equivalent for low-SAA compared with high-SAA (95% ± 1% vs. 92% ± 1%) and hot rice compared with cold rice (94% ± 1% vs. 93% ± 1%). No meaningful associations were observed between genotypes and starch digestibility or glycemic index for any of the SNPs. Conclusions The results do not support the hypotheses that low-SAA, cooling, and common genetic variations in starch-digesting enzymes affect the glycemic index or in vivo carbohydrate digestibility of cooked polished rice. This trial was registered at clinicaltrials.gov as NCT03667963.

Funder

University of Toronto

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3