Exopolysaccharides from milk fermented by lactic acid bacteria enhance dietary carotenoid bioavailability in humans in a randomized crossover trial and in rats

Author:

Morifuji Masashi1ORCID,Ichikawa Satomi1,Kitade Masami1,Fukasawa Tomoyuki1,Asami Yukio1,Manabe Yuki2,Sugawara Tatsuya2

Affiliation:

1. Food Microbiology Research Labs, Meiji Co., Ltd., Meiji Innovation Center, Hachiouji, Tokyo, Japan

2. Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan

Abstract

ABSTRACTBackgroundDietary supplementation with carotenoids can have beneficial health effects, but carotenoids are poorly absorbed.ObjectivesWe aimed to evaluate how milk fermented by lactic acid bacteria affects dietary carotenoid bioavailability in humans and rats and to investigate mechanisms by which active components in milk fermented by Lactobacilli enhance dietary carotenoid absorption.MethodsMale rats (n = 8/group) were administered β-carotene or β-carotene + fermented milk. Rats (n = 6/group) were also pretreated with ezetimibe, a cholesterol absorption inhibitor, to investigate β-carotene transport mechanisms. In humans, 3 studies were conducted using a randomized crossover method. Subjects (n = 16/study) consumed a vegetable (carrot, tomato, or spinach) drink alone or with a fermented milk drink. Blood samples were collected at various time points after consumption.ResultsIn rats, the serum β-carotene area under the concentration–time curve (AUC) was significantly higher for the β-carotene + fermented milk than for β-carotene only. A significant correlation (r = 0.83, P < 0.001) between the exopolysaccharide (EPS) content of fermented milk and serum β-carotene AUC was observed. Ezetimibe treatment did not suppress elevations in serum β-carotene concentrations induced by fermented milk ingestion. In humans, the incremental area under the concentration–time curve (iAUC) for β-carotene in the plasma triacylglycerol-rich lipoprotein (TRL) fraction was significantly (1.8-fold, range: 0.6–3.9) higher when carrot + fermented milk was consumed compared with carrot drink alone. A significantly (6.5-fold, range: 0.04–7.7) higher iAUC for lycopene in the plasma TRL fraction was observed for subjects who consumed tomato + fermented milk compared with tomato drink alone. A significant increase in plasma lutein in all fractions was observed after consumption of spinach + fermented milk, but not with spinach drink alone.ConclusionsCo-ingestion of β-carotene and fermented milk significantly increased dietary β-carotene bioavailability in humans and rats. EPSs could affect the physical properties of fermented milk to enhance dietary β-carotene absorption mediated by simple diffusion mechanisms. These findings may be relevant for methods to increase dietary carotenoid bioavailability.This trial was registered at umin.ac.jp/ctr as UMIN000034838, UMIN000034839, and UMIN000034840.

Funder

Meiji Co., Ltd

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3