Affiliation:
1. Biological Physics Group, Department of Chemistry and Physics of Materials, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria
Abstract
Abstract
Basal and secretory cell doses in the different lobes of the human lung following inhalation of short-lived radon progeny were calculated for a five-lobe asymmetric, stochastic lung model, considering the non-uniform ventilation of the lobes. Dose calculations for defined exposure conditions revealed that the upper lobes receive higher doses than the average bronchial dose for the whole lung, with the right upper lobe receiving the highest dose. The resulting inter-lobar distribution of cellular bronchial doses indicated that the non-uniform lung morphometry is the dominating factor, while non-uniform ventilation only slightly enhances the lobar differences. The comparison of average lobe-specific bronchial doses with the average bronchial dose for the whole lung allows the calculation of lobe-specific dose weighting factors, which can be used to convert average bronchial doses based on symmetric airway generation or bronchial compartment models to lobar bronchial doses.
Publisher
Oxford University Press (OUP)
Subject
Public Health, Environmental and Occupational Health,Radiology, Nuclear Medicine and imaging,General Medicine,Radiation,Radiological and Ultrasound Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献