Computing three-point correlation function randoms counts without the randoms catalogue

Author:

Pearson David W1,Samushia Lado12

Affiliation:

1. Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, KS 66506, USA

2. National Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave., GE-1060 Tbilisi, Georgia

Abstract

ABSTRACT As we move towards future galaxy surveys, the three-point statistics will be increasingly leveraged to enhance the constraining power of the data on cosmological parameters. An essential part of the three-point function estimation is performing triplet counts of synthetic data points in random catalogues. Since triplet counting algorithms scale at best as $\mathcal {O}(N^2\log N)$ with the number of particles and the random catalogues are typically at least 50 times denser than the data; this tends to be by far the most time-consuming part of the measurements. Here, we present a simple method of computing the necessary triplet counts involving uniform random distributions through simple one-dimensional integrals. The method speeds up the computation of the three-point function by orders of magnitude, eliminating the need for random catalogues, with the simultaneous pair and triplet counting of the data points alone being sufficient.

Funder

National Aeronautics and Space Administration

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraining galaxy–halo connection with high-order statistics;Monthly Notices of the Royal Astronomical Society;2022-07-31

2. encore: An $\mathcal {O}(N_g^2)$ Estimator for Galaxy N-Point Correlation Functions;Monthly Notices of the Royal Astronomical Society;2021-10-20

3. Information content of higher order galaxy correlation functions;Monthly Notices of the Royal Astronomical Society;2021-05-25

4. A faster Fourier transform? Computing small-scale power spectra and bispectra for cosmological simulations in (N2) time;Monthly Notices of the Royal Astronomical Society;2020-12-18

5. On the fast random sampling and other properties of the three point correlation function in galaxy surveys;Journal of Cosmology and Astroparticle Physics;2020-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3