Collisional excitation of C+(2P) spin-orbit levels by molecular hydrogen revisited

Author:

Kłos Jacek1,Dagdigian Paul J2ORCID,Lique François3

Affiliation:

1. Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA

2. Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218-2685, USA

3. LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP F-1123-76 063 Le Havre cedex, France

Abstract

ABSTRACT Relaxation of the spin-orbit excited C+(2P3/2) ion by collisions with H2 is an important process in the interstellar medium. Previous calculations of rate coefficients for this process employed potential energies computed for only collinear and perpendicular approach of H2 to the ion. To capture the full angular dependence of the C+–H2 interaction, the angular variation of the potential has been obtained by quantum chemical calculations in this work. These data were used to compute rate coefficients for the de-excitation of the C+(2P3/2) level in collisions with H2 in its j = 0, 1, and 2 rotational levels. With the assumption that the para-H2 rotational levels are in Local Thermodynamic Equilibrium (LTE), rate coefficients were then calculated for de-excitation by para- and ortho-H2 for temperature ranging from 5 to 500 K. The rate coefficient for de-excitation by para-H2 is ca. 10 per cent higher at temperatures near 100 K but 10 per cent lower at temperatures greater than 300 K than the previous best calculation. By contrast, the de-excitation rate coefficient for ortho-H2 is 15 per cent higher at low temperatures but approximately equal as compared with the previous best calculation. The impact of these new rate coefficients is briefly tested in radiative transfer calculations.

Funder

European Research Council

Institut Universitaire de France

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3