Accelerated phase-mixing in the stellar halo due to a rotating bar

Author:

Davies Elliot Y1ORCID,Dillamore Adam M1ORCID,Vasiliev Eugene1ORCID,Belokurov Vasily1ORCID

Affiliation:

1. Institute of Astronomy, University of Cambridge , Madingley Road, Cambridge CB3 0HA, UK

Abstract

ABSTRACT In a galaxy merger, the stars tidally stripped from the satellite and accreted onto the host galaxy undergo phase-mixing and form finely grained structures in the phase space. However, these fragile structures may be destroyed in the subsequent galaxy evolution, in particular, by a rotating bar that appears well after the merger is completed. In this work, we investigate the survivability of phase-space structures in the presence of a bar. We find that a bar with amplitude and pattern speed similar to those of the Milky Way would blur and destroy a substantial amount of the substructure that consists of particles with pericentre radii comparable to the bar length. While this appears to be in tension with the recent discovery of phase-space chevrons in Gaia DR3 data, the most prominent chevrons in our simulations can still be recovered when applying the same analysis procedure as in observations. Moreover, the smoothing effect is less pronounced in the population of stars whose angular momenta have the opposite sign to the bar pattern speed.

Funder

Science and Technology Facilities Council

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematics and dynamics of the Galactic bar revealed by Gaia long-period variables;Monthly Notices of the Royal Astronomical Society;2024-08-23

2. Radial halo substructure in harmony with the Galactic bar;Monthly Notices of the Royal Astronomical Society;2024-07-25

3. The debris of the ‘last major merger’ is dynamically young;Monthly Notices of the Royal Astronomical Society;2024-05-13

4. On the Migration Origin of the Hercules Moving Group with GAIA, LAMOST, APOGEE, and GALAH Surveys;The Astrophysical Journal;2023-10-01

5. Resonant Effects of a Bar on the Galactic Disk Kinematics Perpendicular to Its Plane;Galaxies;2023-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3