Supplying angular momentum to the jittering jets explosion mechanism using inner convection layers

Author:

Shishkin Dmitry1,Soker Noam12ORCID

Affiliation:

1. Department of Physics, Technion, Haifa 3200003, Israel

2. Guangdong Technion Israel Institute of Technology, Shantou 515069, Guangdong Province, China

Abstract

ABSTRACT We conduct one-dimensional stellar evolution simulations in the mass range 13–20 M⊙ to late core collapse times and find that an inner vigorous convective zone with large specific angular momentum fluctuations appears at the edge of the iron core during the collapse. The compression of this zone during the collapse increases the luminosity there and the convective velocities, such that the specific angular momentum fluctuations are of the order of $j_{\rm conv} \simeq 5 \times 10^{15} {~\rm cm}^2 {~\rm s}^{-1}$. If we consider that three-dimensional simulations show convective velocities that are three to four times larger than what the mixing length theory gives, and that the spiral standing accretion shock instability in the post-shock region of the stalled shock at a radius of ${\simeq}100 {~\rm km}$ amplifies perturbations, we conclude that the fluctuations that develop during core collapse are likely to lead to stochastic (intermittent) accretion discs around the newly born neutron star. In reaching this conclusion, we also make two basic assumptions with uncertainties that we discuss. Such intermittent discs can launch jets that explode the star in the frame of the jittering jets explosion mechanism.

Funder

Israel Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3