Double trouble: Gaia reveals (proto)planetary systems that may experience more than one dense star-forming environment

Author:

Schoettler Christina1ORCID,Parker Richard J1ORCID

Affiliation:

1. Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK

Abstract

ABSTRACT Planetary systems appear to form contemporaneously around young stars within young star-forming regions. Within these environments, the chances of survival, as well as the long-term evolution of these systems, are influenced by factors such as dynamical interactions with other stars and photoevaporation from massive stars. These interactions can also cause young stars to be ejected from their birth regions and become runaways. We present examples of such runaway stars in the vicinity of the Orion Nebula Cluster (ONC) found in Gaia DR2 data that have retained their discs during the ejection process. Once set on their path, these runaways usually do not encounter any other dense regions that could endanger the survival of their discs or young planetary systems. However, we show that it is possible for star–disc systems, presumably ejected from one dense star-forming region, to encounter a second dense region, in our case the ONC. While the interactions of the ejected star–disc systems in the second region are unlikely to be the same as in their birth region, a second encounter will increase the risk to the disc or planetary system from malign external effects.

Funder

Science and Technology Facilities Council

Royal Society

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Isotopic Enrichment of Planetary Systems from Asymptotic Giant Branch Stars;The Astrophysical Journal Letters;2023-07-01

2. The origin of early-type runaway stars from open clusters;Astronomy & Astrophysics;2022-07

3. Constraining the initial conditions of NGC 2264 using ejected stars found in Gaia DR2;Monthly Notices of the Royal Astronomical Society;2021-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3