About the loss of a primordial atmosphere of super-Earths by planetesimal impacts

Author:

Lozovsky Michael1ORCID,Prialnik Dina1ORCID,Podolak Morris1ORCID

Affiliation:

1. Department of Geosciences, Tel-Aviv University , Tel-Aviv, 6139601, Israel

Abstract

ABSTRACT We consider planets composed of water ice and rock, located far from a central star. In an earlier study, computing the growth of planets by continuous accretion, we found that a large fraction of the ice evaporates upon accretion, creating a water vapor atmosphere. Here, we consider accretion as a discrete series of planetesimal impacts (of the order of 108), at the same time-dependent accretion rate, and investigate the fate of the vapor, as a result of its interaction with the accreting planetesimals. We find that a large fraction of the vapor escapes. The remaining fraction may form an outer layer of ice after the termination of accretion and cooling of the surface. The escaped water mass may significantly alter the ice-to-rock ratio of the planet. We investigate the effect of different choices of parameters such as the ice-to-rock ratio, the planetesimal size distribution, and the impact velocities. We find that the planetesimal size distribution has a negligible effect and explain why. By contrast, the ice-to-rock ratio and impact velocities affect the fraction of retained water masses considerably.

Funder

Israel Atomic Energy Commission

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3