Three-dimensional propagation of kink wave trains in solar coronal slabs

Author:

Li Bo1ORCID,Guo Mingzhe1,Yu Hui1,Chen Shao-Xia1,Shi Mijie1

Affiliation:

1. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University , Weihai 264209, China

Abstract

ABSTRACT Impulsively excited wave trains are of considerable interest in solar coronal seismology. To our knowledge, however, it remains to examine the three-dimensional (3D) dispersive propagation of impulsive kink waves in straight, field-aligned, symmetric, low-beta, slab equilibria that are structured only in one transverse direction. We offer a study here, starting with an analysis of linear oblique kink modes from an eigenvalue problem perspective. Two features are numerically found for continuous and step structuring alike, one being that the group and phase velocities may lie on opposite sides of the equilibrium magnetic field ($\boldsymbol {B}_0$), and the other being that the group trajectories extend only to a limited angle from $\boldsymbol {B}_0$. We justify these features by making analytical progress for the step structuring. More importantly, we demonstrate by a 3D time-dependent simulation that these features show up in the intricate interference patterns of kink wave trains that arise from a localized initial perturbation. In a plane perpendicular to the direction of inhomogeneity, the large-time slab-guided patterns are confined to a narrow sector about $\boldsymbol {B}_0$, with some wavefronts propagating toward $\boldsymbol {B}_0$. We conclude that the phase and group diagrams lay the necessary framework for understanding the complicated time-dependent behaviour of impulsive waves.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3