Not so fast: LB-1 is unlikely to contain a 70 M⊙ black hole

Author:

El-Badry Kareem1ORCID,Quataert Eliot1

Affiliation:

1. Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA

Abstract

ABSTRACT The recently discovered binary LB-1 has been reported to contain a ${\sim }70\, \mathrm{M}_{\odot}$ black hole (BH). The evidence for the unprecedentedly high mass of the unseen companion comes from reported radial velocity (RV) variability of the H α emission line, which has been proposed to originate from an accretion disc around a BH. We show that there is in fact no evidence for RV variability of the H α emission line, and that its apparent shifts instead originate from shifts in the luminous star’s H α absorption line. If not accounted for, such shifts will cause a stationary emission line to appear to shift in antiphase with the luminous star. We show that once the template spectrum of a B star is subtracted from the observed Keck/HIRES spectra of LB-1, evidence for RV variability vanishes. Indeed, the data rule out periodic variability of the line with velocity semi-amplitude $K_{\rm H\,\alpha } \gt 1.3\, {\rm {km}} \, s^{-1}$. This strongly suggests that the observed H α emission does not originate primarily from an accretion disc around a BH, and thus that the mass ratio cannot be constrained from the relative velocity amplitudes of the emission and absorption lines. The nature of the unseen companion remains uncertain, but a ‘normal’ stellar-mass BH with mass 5 ≲ M/M⊙ ≲ 20 seems most plausible. The H α emission likely originates primarily from circumbinary material, not from either component of the binary.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3