Does Nature use neutral beams for interstellar plasma heating around compact objects?

Author:

Churazov E12,Khabibullin I12,Sunyaev R12

Affiliation:

1. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str 1, D-85741 Garching, Germany

2. Space Research Institute (IKI), Profsoyuznaya 84/32, Moscow 117997, Russia

Abstract

ABSTRACT A neutral beam injection technique is employed in all major TOKAMAK facilities for heating of magnetically confined plasma. The question then arises, whether a similar mechanism might work in astrophysical objects? For instance, a hyper-Eddington Galactic binary SS433 possesses baryonic jets, moving at a quarter of the speed of light, and observations revealed signs of gas cooling and recombination on sub-pc scales and equally strong signs of powerful energy deposition on much larger scales ∼100 pc. Here, we consider a model where neutral atoms transport this energy. A sub-relativistic beam of neutral atoms penetrates the interstellar medium; these atoms gradually get ionized and deposit their energy over a region, whose longitudinal dimension is set by the ‘ionization length’. The channel, where the energy is deposited, expands sideways and drives a shock in the lateral direction. Once the density in the channel drops, the heating rate by the beam drops accordingly, and the region of the energy release moves along the direction of the beam. We discuss distinct features associated with this scenario and speculate that such configuration might also boost shock acceleration of the ‘pick-up’ protons that arise due to ionization of neutral atoms both upstream and downstream of the shock.

Funder

Russian Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3