Influence of prenatal transportation stress-induced differential DNA methylation on the physiological control of behavior and stress response in suckling Brahman bull calves

Author:

Littlejohn Brittni P12,Price Deborah M12,Neuendorff Don A1,Carroll Jeffery A3,Vann Rhonda C4,Riggs Penny K2,Riley David G2,Long Charles R12,Randel Ronald D1,Welsh Thomas H2

Affiliation:

1. Texas A&M AgriLife Research & Extension Center, Overton, TX

2. Department of Animal Science, Texas A&M University, and Texas A&M AgriLife Research, College Station, TX

3. USDA-ARS, Livestock Issues Research Unit, Lubbock, TX

4. Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Raymond, MS

Abstract

Abstract The objective of this experiment was to examine potential differential methylation of DNA as a mechanism for altered behavioral and stress responses in prenatally stressed (PNS) compared with nonprenatally stressed (Control) young bull calves. Mature Brahman cows (n = 48) were transported for 2-h periods at 60 ± 5, 80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 d of gestation (Transported group) or maintained as nontransported Controls (n = 48). From the offspring born to Transported and Control cows, a subset of 28-d-old intact bulls (n = 7 PNS; n = 7 Control) were evaluated for methylation of DNA of behavior and stress response–associated genes. Methylation of DNA from white blood cells was assessed via reduced representation bisulfite sequencing methods. Because increased methylation of DNA within gene promoter regions has been associated with decreased transcriptional activity of the corresponding gene, differentially methylated (P ≤ 0.05) CG sites (cytosine followed by a guanine nucleotide) located within promoter regions (n = 1,205) were used to predict (using Ingenuity Pathway Analysis software) alterations to canonical pathways in PNS compared with Control bull calves. Among differentially methylated genes (P ≤ 0.05) related to behavior and the stress response were OPRK1, OPRM1, PENK, POMC, NR3C2, TH, DRD1, DRD5, COMT, HTR6, HTR5A, GABRA4, GABRQ, and GAD2. Among altered (P < 0.05) signaling pathways related to behavior and the stress response were Opioid Signaling, Corticotropin-Releasing Hormone Signaling, Dopamine Receptor Signaling, Dopamine-DARPP32 Feedback in cAMP Signaling, Serotonin Receptor Signaling, and GABA Receptor Signaling. Alterations to behavior and stress response–related genes and canonical pathways supported previously observed elevations in temperament score and serum cortisol through weaning in the larger population of PNS calves from which bulls in this study were derived. Differential methylation of DNA and predicted alterations to behavior and stress response–related pathways in PNS compared with Control bull calves suggest epigenetic programming of behavior and the stress response in utero.

Funder

Texas A&M AgriLife Research

United States Department of Agriculture National Institute of Food and Agriculture

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3