Effects of inoculation of corn silage with Lactobacillus spp. or Saccharomyces cerevisiae alone or in combination on silage fermentation characteristics, nutrient digestibility, and growth performance of growing beef cattle

Author:

Nair Jayakrishnan1ORCID,Xu Shanwei2,Smiley Brenda3,Yang Hee-Eun1,McAllister Tim A1,Wang Yuxi1

Affiliation:

1. Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge AB, Canada

2. Alberta Agriculture and Forestry, Lethbridge, AB, Canada

3. DuPont Pioneer, Forage Additive Research, Johnston, IA

Abstract

AbstractThis study evaluated the effects of a novel silage inoculant containing Saccharomyces cerevisiae strain 3 as a direct fed microbial (DFM) on the ensiling, aerobic stability, and nutrient digestibility of whole-crop corn silage and growth performance of beef cattle. Treatments included uninoculated corn silage (CON) or corn silage inoculated with a mixture of 1.1 × 105 cfu g−1 fresh forage Lactobacillus plantarum and Lactobacillus buchneri (INOC1) or 1.0 × 104 cfu g−1 fresh forage S. cerevisiae strain 3 (INOC2) or a mixture of INOC1 and INOC2 (INOC3). Silage in INOC1 had lower (P = 0.03) proportion of lactate, with acetate (Ac) proportion ranking as INOC1 > INOC3 > INOC2 (P < 0.01). In terminal silage, numbers of lactic acid bacteria were greater (P = 0.05) for INOC1 than CON and INOC2, while yeast counts tended (P = 0.08) to be greater for INOC2 than INOC3 on day 3 of aerobic exposure. Aerobic stability of corn silage was not impacted by inoculation with S. cerevisiae strain 3. Heifers fed INOC2 and INOC3 had lower (P < 0.01) ruminal Ac concentration than those fed CON. Apparent total tract digestibilities of DM, OM, ADF, and NDF were greater (P ≤ 0.03) for heifers fed INOC2 than those fed CON. Growth performance was similar across treatments, excepting DMI as percent of BW tended to be lower (P = 0.08) for INOC2 steers compared to CON steers. These results suggest that S. cerevisiae strain 3 has potential as a component in a fourth generation DFM silage inoculant.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Animal Science and Zoology,General Medicine,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3