Bayesian models for prediction of the set-difference in volleyball

Author:

Ntzoufras Ioannis1,Palaskas Vasilis1,Drikos Sotiris1

Affiliation:

1. AUEB Sports Analytics Group, Computational and Bayesian Statistics Lab, Department of Statistics, Athens University of Economics and Business, 76 Patission Street, 10434 Athens, Greece

Abstract

Abstract We study and develop Bayesian models for the analysis of volleyball match outcomes as recorded by the set-difference. Due to the peculiarity of the outcome variable (set-difference) which takes discrete values from $-3$ to $3$, we cannot consider standard models based on the usual Poisson or binomial assumptions used for other sports such as football/soccer. Hence, the first and foremost challenge was to build models appropriate for the set-difference of each volleyball match. Here we consider two major approaches: (a) an ordered multinomial logistic regression model and (b) a model based on a truncated version of the Skellam distribution. For the first model, we consider the set-difference as an ordinal response variable within the framework of multinomial logistic regression models. Concerning the second model, we adjust the Skellam distribution to account for the volleyball rules. We fit and compare both models with the same covariate structure as in Karlis & Ntzoufras (2003). Both models are fitted, illustrated and compared within Bayesian framework using data from both the regular season and the play-offs of the season 2016/17 of the Greek national men’s volleyball league A1.

Funder

Research Centre of Athens University of Economics and Business

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Management Science and Operations Research,Strategy and Management,General Economics, Econometrics and Finance,Modeling and Simulation,Management Information Systems

Reference36 articles.

1. Tactical determinants of setting zone in elite mens volleyball;Afonso;Journal of Sports Science and Medicine,2012

2. Is it possible to estimate match result in volleyball: a new prediction model;Akarcesme;Central European Journal of Sport Sciences and Medicine,2017

3. Stan: a probabilistic programming language;Carpenter;Journal of Statistical Software,2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3