Affiliation:
1. Hasso Plattner Institute, University of Potsdam, August-Bebel-Str. 88, 14482 Potsdam, Germany
Abstract
Abstract
In dynamic decision problems, it is challenging to find the right balance between maximizing expected rewards and minimizing risks. In this paper, we consider NP-hard mean-variance (MV) optimization problems in Markov decision processes with a finite time horizon. We present a heuristic approach to solve MV problems, which is based on state-dependent risk aversion and efficient dynamic programming techniques. Our approach can also be applied to mean-semivariance (MSV) problems, which particularly focus on the downside risk. We demonstrate the applicability and the effectiveness of our heuristic for dynamic pricing applications. Using reproducible examples, we show that our approach outperforms existing state-of-the-art benchmark models for MV and MSV problems while also providing competitive runtimes. Further, compared to models based on constant risk levels, we find that state-dependent risk aversion allows to more effectively intervene in case sales processes deviate from their planned paths. Our concepts are domain independent, easy to implement and of low computational complexity.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Management Science and Operations Research,Strategy and Management,General Economics, Econometrics and Finance,Modeling and Simulation,Management Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献