Staying Positive: Challenges and Solutions in Using Pure Multiplicative ETS Models

Author:

Svetunkov Ivan12ORCID,Boylan John E12ORCID

Affiliation:

1. Centre for Marketing Analytics and Forecasting , Department of Management Science, , Lancaster University Management School, LA1 4YX , UK

2. Lancaster University , Department of Management Science, , Lancaster University Management School, LA1 4YX , UK

Abstract

Abstract Exponential smoothing in state space form (ETS) is a popular forecasting technique, widely used in research and practice. While the additive error ETS models have been well studied, the multiplicative error ones have received much less attention in forecasting literature. Still, these models can be useful in cases, when one deals with positive data, because they are supposed to work in such situations. Unfortunately, the classical assumption of normality for the error term might break this property and lead to non-positive forecasts on positive data. In order to address this issue we propose using Log-Normal, Gamma and Inverse Gaussian distributions, which are defined for positive values only. We demonstrate what happens with ETS(M,*,*) models in this case, discuss conditional moments of ETS with these distribution and show that they are more natural for the models than the Normal one. We conduct the simulation experiments in order to study the bias introduced by point forecasts in these models and then compare the models with different distributions. We finish the paper with an example of application, showing how pure multiplicative ETS with a positive distribution works.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Management Science and Operations Research,Strategy and Management,General Economics, Econometrics and Finance,Modeling and Simulation,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3