The Weng'an biota and the Ediacaran radiation of multicellular eukaryotes

Author:

Xiao Shuhai1,Muscente A. D.1,Chen Lei23,Zhou Chuanming4,Schiffbauer James D.5,Wood Andrew D.6,Polys Nicholas F.6,Yuan Xunlai2

Affiliation:

1. Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

2. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China

3. College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China

4. Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences, Nanjing 210008, China

5. Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA

6. Advanced Research Computing, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

Abstract

Abstract The rise of multicellularity represents a major evolutionary transition and it occurred independently in multiple eukaryote clades. Although simple multicellular organisms may have evolved in the Mesoproterozoic Era or even earlier, complex multicellular eukaryotes began to diversify only in the Ediacaran Period, just before the Cambrian explosion. Thus, the Ediacaran fossil record can provide key paleontological evidence about the early radiation of multicellular eukaryotes that ultimately culminated in the Cambrian explosion. The Ediacaran Weng'an biota in South China hosts exceptionally preserved eukaryote fossils, including various acanthomorphic acritarchs, pseudoparenchymatous thalli, tubular microfossils, and spheroidal fossils such as Megasphaera, Helicoforamina, Spiralicellula, and Caveasphaera. Many of these fossils have been interpreted as multicellular eukaryotes, although alternative interpretations have also been proposed. In this review, we critically examine these various interpretations, focusing particularly on Megasphaera, which has been variously interpreted as a sulfur-oxidizing bacterium, a unicellular protist, a mesomycetozoean-like holozoan, a volvocine green alga, a stem-group animal, or a crown-group animal. We conclude that Megasphaera is a multicellular eukaryote with evidence for cell-to-cell adhesion, a flexible membrane unconstrained by a rigid cell wall, spatial cellular differentiation, germ–soma separation, and programmed cell death. These features are inconsistent with the bacterium, unicellular protist, and mesomycetozoean-like holozoan interpretations. Thus, the surviving hypotheses, particularly the stem-group animal and algal interpretations, should be further tested with additional evidence. The Weng'an biota also hosts cellularly differentiated pseudoparenchymatous thalli with specialized reproductive structures indicative of an affinity with florideophyte red algae. The other Weng'an fossils reviewed here may also be multicellular eukaryotes, although direct cellular evidence is lacking in some and phylogenetic affinities are poorly constrained in others. The Weng'an biota offers many research opportunities to resolve the life histories and phylogenetic diversity of early multicellular eukaryotes and to illuminate the evolutionary prelude to the Cambrian explosion.

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Reference172 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3