Affiliation:
1. Shanghai 10th People's Hospital & School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
2. Shanghai Public Health Clinical Center, Fudan University, Shanghai 200433, China
Abstract
Abstract
B-cell epitope information is critical to immune therapy and vaccine design. Protein epitopes can be significantly affected by glycosylation, while no methods have considered this till now. Based on previous versions of Spatial Epitope Prediction of Protein Antigens (SEPPA), we here present an enhanced tool SEPPA 3.0, enabling glycoprotein antigens. Parameters were updated based on the latest and largest dataset. Then, additional micro-environmental features of glycosylation triangles and glycosylation-related amino acid indexes were added as important classifiers, coupled with final calibration based on neighboring antigenicity. Logistic regression model was retained as SEPPA 2.0. The AUC value of 0.794 was obtained through 10-fold cross-validation on internal validation. Independent testing on general protein antigens resulted in AUC of 0.740 with BA (balanced accuracy) of 0.657 as baseline of SEPPA 3.0. Most importantly, when tested on independent glycoprotein antigens only, SEPPA 3.0 gave an AUC of 0.749 and BA of 0.665, leading the top performance among peers. As the first server enabling accurate epitope prediction for glycoproteins, SEPPA 3.0 shows significant advantages over popular peers on both general protein and glycoprotein antigens. It can be accessed at http://bidd2.nus.edu.sg/SEPPA3/ or at http://www.badd-cao.net/seppa3/index.html. Batch query is supported.
Funder
National Key R&D Program of China
Fundamental Research Funds for the Central Universities
Shanghai Sailing Program
Publisher
Oxford University Press (OUP)
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献