Building Cetacean Locomotor Muscles throughout Ontogeny to Support High-Performance Swimming into Adulthood

Author:

Noren S R1

Affiliation:

1. Institute of Marine Sciences, University of California Santa Cruz Center for Ocean Health , 115 McAllister Way, Santa Cruz, CA 95060 , USA

Abstract

Synopsis The demands on the locomotor muscles at birth are different for cetaceans than terrestrial mammals. Cetacean muscles do not need to support postural costs as the neonate transitions from the womb because water’s buoyant force supports body weight. Rather, neonatal cetacean muscles must sustain locomotion under hypoxic conditions as the neonate accompanies its mother swimming underwater. Despite disparate demands at birth, cetaceans like terrestrial mammals require postnatal development to attain mature musculature. Neonatal cetaceans have a low proportion of muscle mass, and their locomotor muscles have lower mitochondrial density, myoglobin content (Mb), and buffering capacity than those found in the adult locomotor muscle. For example, the locomotor muscle of the neonatal bottlenose dolphin has only 10 and 65% of the Mb and buffering capacity, respectively, found in the adult locomotor muscle. The maturation period required to achieve mature Mb and buffering capacity in the locomotor muscle varies across cetacean species from 0.75 to 4 and 1.17 to 3.4 years, respectively. The truncated nursing interval of harbor porpoises and sub-ice travel of beluga whales may be drivers for faster muscle maturation in these species. Despite these postnatal changes in the locomotor muscle, ontogenetic changes in locomotor muscle fiber type seem to be rare in cetaceans. Regardless, the underdeveloped aerobic and anaerobic capacities of the locomotor muscle of immature dolphins result in diminished thrusting capability and swim performance. Size-specific stroke amplitudes (23–26% of body length) of 0–3-month-old dolphins are significantly smaller than those of >10-month-olds (29–30% of body length), and 0–1-month-olds only achieve 37 and 52% of the mean and maximum swim speed of adults, respectively. Until swim performance improves with muscle maturation, young cetaceans are precluded from achieving their pod’s swim speeds, which could have demographic consequences when fleeing anthropogenic disturbances.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

Reference73 articles.

1. Annual estimates of the unobserved incidental kill of pantropical spotted dolphin (Stenella attenuata attenuata) calves in the tuna purse-seine fishery in the eastern tropical Pacific;Archer;Fish Bull,2004

2. Unobserved kill of nursing dolphin calves in a tuna purse-seine fishery;Archer;Mar Mamm Sci,2001

3. Movement and speed of dolphin schools responding to an approaching ship;Au;Fish Bull,1982

4. Behavioural ecology of pinniped neonates;Bowen,1991

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3