Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing

Author:

Jackson Lillian R1,Lopez Mariana S1,Alward Beau12ORCID

Affiliation:

1. Department of Psychology, University of Houston , Houston, TX 77204 USA

2. Department of Biology and Biochemistry, University of Houston , Houston, TX 77004 USA

Abstract

SynopsisIn 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as “Krogh's Principle,” these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.

Funder

National Institutes of Health

University of Houston-National Research University Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3