The neural networks underlying reappraisal of empathy for pain

Author:

Naor Navot1,Rohr Christiane2,Schaare Lina H2,Limbachia Chirag1,Shamay-Tsoory Simone3,Okon-Singer Hadas3

Affiliation:

1. University of Maryland, Department of Psychology, College Park, MD 20742-5031, USA

2. Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig 04103, Germany

3. University of Haifa, Department of Psychology, Haifa 3498838, Israel

Abstract

AbstractEmotion regulation plays a central role in empathy. Only by successfully regulating our own emotions can we reliably use them in order to interpret the content and valence of others’ emotions correctly. In an functional magnetic resonance imaging (fMRI)-based experiment, we show that regulating one’s emotion via reappraisal modulated biased emotional intensity ratings following an empathy for pain manipulation. Task-based analysis revealed increased activity in the right inferior frontal gyrus (IFG) when painful emotions were regulated using reappraisal, whereas empathic feelings that were not regulated resulted in increased activity bilaterally in the precuneus, supramarginal gyrus and middle frontal gyrus (MFG), as well as the right parahippocampal gyrus. Functional connectivity analysis indicated that the right IFG plays a role in the regulation of empathy for pain, through its connections with regions in the empathy for pain network. Furthermore, these connections were further modulated as a function of the type of regulation used: in sum, our results suggest that accurate empathic judgment (i.e. empathy that is unbiased) relies on a complex interaction between neural regions involved in emotion regulation and regions associated with empathy for pain. Thus, demonstrating the importance of emotion regulation in the formulation of complex social systems and sheds light on the intricate network implicated in this complex process.

Publisher

Oxford University Press (OUP)

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3