Reduced GM–WM concentration inside the Default Mode Network in individuals with high emotional intelligence and low anxiety: a data fusion mCCA+jICA approach

Author:

Grecucci Alessandro12,Monachesi Bianca1ORCID,Messina Irene13

Affiliation:

1. Department of Psychology and Cognitive Sciences (DiPSCo), University of Trento , Rovereto (TN), Italy 38068, Italy

2. Centre for Medical Sciences, CISMed, University of Trento , Trento, Italy 38122, Italy

3. Faculty of Social and Communication Sciences, Universitas Mercatorum , Rome, Italy

Abstract

Abstract The concept of emotional intelligence (EI) refers to the ability to recognize and regulate emotions to appropriately guide cognition and behaviour. Unfortunately, studies on the neural bases of EI are scant, and no study so far has exhaustively investigated grey matter (GM) and white matter (WM) contributions to it. To fill this gap, we analysed trait measure of EI and structural MRI data from 128 healthy participants to shed new light on where and how EI is encoded in the brain. In addition, we explored the relationship between the neural substrates of trait EI and trait anxiety. A data fusion unsupervised machine learning approach (mCCA + jICA) was used to decompose the brain into covarying GM–WM networks and to assess their association with trait-EI. Results showed that high levels trait-EI are associated with decrease in GM–WM concentration in a network spanning from frontal to parietal and temporal regions, among which insula, cingulate, parahippocampal gyrus, cuneus and precuneus. Interestingly, we also found that the higher the GM–WM concentration in the same network, the higher the trait anxiety. These findings encouragingly highlight the neural substrates of trait EI and their relationship with anxiety. The network is discussed considering its overlaps with the Default Mode Network.

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3