Computational approaches to the neuroscience of social perception

Author:

Brooks Jeffrey A1,Stolier Ryan M2,Freeman Jonathan B1ORCID

Affiliation:

1. Department of Psychology, New York University, New York, NY, USA

2. Columbia University, 1190 Amsterdam Ave., New York, NY 10027, USA

Abstract

Abstract Across multiple domains of social perception—including social categorization, emotion perception, impression formation and mentalizing—multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has permitted a more detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging fields, the neuroscientific study of social perception initially relied on broad structure–function associations derived from univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational relevance of different brain regions, and discuss how MVPA allows explicit tests of the correspondence between psychological models and the neural representation of social information. We also describe current and future advances in methodological approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception.

Funder

National Institutes of Health

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cognitive Neuroscience,Experimental and Cognitive Psychology,General Medicine

Reference84 articles.

1. Meeting of minds: the medial frontal cortex and social cognition;Amodio;Nature Reviews Neuroscience,2006

2. Multivariate pattern dependence;Anzellotti;PLoS Computational Biology,2017

3. Neural correlations, population coding and computation;Averbeck;Nature Reviews. Neuroscience,2006

4. A cortical mechanism for triggering top-down facilitation in visual object recognition;Bar;Journal of Cognitive Neuroscience,2003

5. Top-down facilitation of visual recognition;Bar,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3