Affiliation:
1. Department of Mathematics and Numerical Simulation and High-Performance Computing Laboratory, School of Sciences, Nanchang University, Nanchang, China
Abstract
Abstract
Protein phosphorylation is a reversible and ubiquitous post-translational modification that primarily occurs at serine, threonine and tyrosine residues and regulates a variety of biological processes. In this paper, we first briefly summarized the current progresses in computational prediction of eukaryotic protein phosphorylation sites, which mainly focused on animals and plants, especially on human, with a less extent on fungi. Since the number of identified fungi phosphorylation sites has greatly increased in a wide variety of organisms and their roles in pathological physiology still remain largely unknown, more attention has been paid on the identification of fungi-specific phosphorylation. Here, experimental fungi phosphorylation sites data were collected and most of the sites were classified into different types to be encoded with various features and trained via a two-step feature optimization method. A novel method for prediction of species-specific fungi phosphorylation-PreSSFP was developed, which can identify fungi phosphorylation in seven species for specific serine, threonine and tyrosine residues (http://computbiol.ncu.edu.cn/PreSSFP). Meanwhile, we critically evaluated the performance of PreSSFP and compared it with other existing tools. The satisfying results showed that PreSSFP is a robust predictor. Feature analyses exhibited that there have some significant differences among seven species. The species-specific prediction via two-step feature optimization method to mine important features for training could considerably improve the prediction performance. We anticipate that our study provides a new lead for future computational analysis of fungi phosphorylation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangxi Province
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献