Optimizing aminoglycoside selection for KPC-producing Klebsiella pneumoniae with the aminoglycoside-modifying enzyme (AME) gene aac(6’)-Ib

Author:

Butler David A1,Rana Amisha P1,Krapp Fiorella23,Patel Shitalben R1ORCID,Huang Yanqin1ORCID,Ozer Egon A2,Hauser Alan R2,Bulman Zackery P1ORCID

Affiliation:

1. University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA

2. Northwestern University Feinberg School of Medicine, Chicago, IL, USA

3. Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano, Lima, Peru

Abstract

Abstract Objectives KPC-producing Klebsiella pneumoniae (KPC-Kp) isolates commonly co-harbour the aminoglycoside-modifying enzyme (AME) gene aac(6’)-Ib, which encodes an AME that can confer resistance to some of the commercially available aminoglycosides. We sought to determine the influence of AAC(6’)-Ib in KPC-Kp on the pharmacodynamic activity of aminoglycosides. Methods Six KPC-Kp clinical isolates, three with and three without aac(6’)-Ib, were analysed. Using these isolates, the bacterial killing of amikacin, gentamicin and tobramycin was assessed in static time–kill experiments. The pharmacodynamic activity of the aminoglycosides was then assessed in a dynamic one-compartment infection model over 72 h using simulated human pharmacokinetics of once-daily dosing with amikacin (15 mg/kg), gentamicin (5 mg/kg) and tobramycin (5 mg/kg). Results At clinically relevant aminoglycoside concentrations in time–kill experiments and the dynamic one-compartment model, gentamicin was more active than amikacin or tobramycin against the isolates harbouring aac(6’)-Ib. Amikacin, gentamicin and tobramycin all showed progressively reduced bacterial killing with exposure to repeated doses against most isolates in the dynamic one-compartment model. MIC values were generally not a good predictor of gentamicin pharmacodynamic activity against KPC-Kp, but were more reliable for amikacin and tobramycin. Conclusions Gentamicin may be preferred over amikacin or tobramycin for treatment of KPC-Kp infections. However, gentamicin MICs are not a consistent predictor of its pharmacodynamic activity and unexpected treatment failures are possible.

Funder

Chicago Biomedical Consortium

Searle Funds

Chicago Community Trust

National Institutes of Health

National Center for Advancing Translational Sciences

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3