Affiliation:
1. BioVersys AG, Basel, Switzerland
2. Biozentrum, University of Basel, Basel, Switzerland
3. BioVersys SAS, Lille, France
Abstract
Abstract
Background
Rifabutin, an oral drug approved to treat Mycobacterium avium infections, demonstrated potent activity against Acinetobacter baumannii in nutrient-limited medium enabled by rifabutin cellular uptake through the siderophore receptor FhuE.
Objectives
To determine rifabutin in vitro activity and resistance mechanisms in a large panel of A. baumannii isolates.
Methods
Two hundred and ninety-three carbapenem-resistant A. baumannii clinical isolates collected from Europe, the USA and Asia during 2017–19 were used for MIC determination. Sequencing/genotyping of fhuE, rpoB and arr-2 genes in isolates with elevated rifabutin MIC combined with genetic engineering and gene expression quantification was used to characterize rifabutin’s mode of action and resistance mechanisms.
Results
Rifabutin showed excellent activity on the strain panel, with an MIC50/90 of 0.008/1 mg/L, and was superior to all other antibiotics tested, including colistin, tigecycline and cefiderocol (MIC90 of 8 mg/L). Rifabutin remained active on resistant subpopulations, including strains resistant to the siderophore–drug conjugate cefiderocol (MIC90 of 2 mg/L, n = 23). At least two independent resistance mechanisms were required to abolish rifabutin activity, which is in line with the dose-dependent mutational resistance frequency reaching 10−9 at rifabutin concentrations at or above 2 mg/L.
Conclusions
This study demonstrated the potent activity of rifabutin against carbapenem-resistant A. baumannii. We propose that FhuE-mediated active uptake of rifabutin enables activity against rifampicin-resistant isolates. To achieve clinically meaningful strain coverage and to avoid rapid resistance development, rifabutin concentrations ≥2 mg/L are required, something rifabutin oral formulations cannot deliver.
Funder
European Commission via the International Training Network Train2Trarget
Publisher
Oxford University Press (OUP)
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献