Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles

Author:

Bielaszewska Martina12,Daniel Ondřej3,Karch Helge2,Mellmann Alexander2

Affiliation:

1. National Reference Laboratory for E. coli and Shigellae, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic

2. Institute for Hygiene, University of Muenster, Robert Koch Str. 41, 48149 Muenster, Germany

3. National Reference Laboratory for Salmonellae, National Institute of Public Health, Šrobárova 48, 100 42 Prague, Czech Republic

Abstract

Abstract Background Bacterial outer membrane vesicles (OMVs) are an emerging source of antibiotic resistance transfer but their role in the spread of the blaCTX-M-15 gene encoding the most frequent CTX-M ESBL in Enterobacteriaceae is unknown. Objectives To determine the presence of blaCTX-M-15 and other antibiotic resistance genes in OMVs of the CTX-M-15-producing MDR Escherichia coli O104:H4 outbreak strain and the ability of these OMVs to spread these genes among Enterobacteriaceae under different conditions. Methods OMV-borne antibiotic resistance genes were detected by PCR; OMV-mediated transfer of blaCTX-M-15 and the associated blaTEM-1 was quantified under laboratory conditions, simulated intraintestinal conditions and under ciprofloxacin stress; resistance to antibiotics and the ESBL phenotype were determined by the CLSI disc diffusion methods and the presence of pESBL by plasmid profiling and Southern blot hybridization. Results E. coli O104:H4 OMVs carried blaCTX-M-15 and blaTEM-1 located on the pESBL plasmid, but not chromosomal antibiotic resistance genes. The OMVs transferred blaCTX-M-15, blaTEM-1 and the associated pESBL into Enterobacteriaceae of different species. The frequencies of the OMV-mediated transfer were significantly increased under simulated intraintestinal conditions and under ciprofloxacin stress when compared with laboratory conditions. The ‘vesiculants’ (i.e. recipients that received the blaCTX-M-15- and blaTEM-1-harbouring pESBL via OMVs) acquired resistance to cefotaxime, ceftazidime and cefpodoxime and expressed the ESBL phenotype. They were able to further spread pESBL and the blaCTX-M-15 and blaTEM-1 genes via OMVs. Conclusions OMVs are efficient vehicles for dissemination of the blaCTX-M-15 gene among Enterobacteriaceae and may contribute to blaCTX-M-15 transfer in the human intestine.

Funder

German Research Foundation

NIPH

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3